3.4.87 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\) [387]

3.4.87.1 Optimal result
3.4.87.2 Mathematica [B] (warning: unable to verify)
3.4.87.3 Rubi [A] (verified)
3.4.87.4 Maple [B] (verified)
3.4.87.5 Fricas [F]
3.4.87.6 Sympy [F]
3.4.87.7 Maxima [F(-1)]
3.4.87.8 Giac [F]
3.4.87.9 Mupad [F(-1)]

3.4.87.1 Optimal result

Integrand size = 33, antiderivative size = 387 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 B-3 b^2 (A+B)+a b (A+3 B)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

output
2/3*(A*a^2*b+3*A*b^3+2*B*a^3-6*B*a*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+ 
c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)* 
(-b*(1+sec(d*x+c))/(a-b))^(1/2)/(a-b)/b^3/(a+b)^(3/2)/d+2/3*(2*B*a^2-3*b^2 
*(A+B)+a*b*(A+3*B))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2 
),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/b^2/(a^2-b^2)/d/(a+b)^(1/2)+2/3*a*(A*b-B*a)*tan(d*x+c)/b/(a^2- 
b^2)/d/(a+b*sec(d*x+c))^(3/2)+2/3*(A*a^2*b+3*A*b^3+2*B*a^3-6*B*a*b^2)*tan( 
d*x+c)/b/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)
 
3.4.87.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3514\) vs. \(2(387)=774\).

Time = 26.34 (sec) , antiderivative size = 3514, normalized size of antiderivative = 9.08 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Result too large to show} \]

input
Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(5/2) 
,x]
 
output
((b + a*Cos[c + d*x])^3*Sec[c + d*x]^3*((-2*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 
 6*a*b^2*B)*Sin[c + d*x])/(3*b^2*(-a^2 + b^2)^2) + (2*(A*b*Sin[c + d*x] - 
a*B*Sin[c + d*x]))/(3*(-a^2 + b^2)*(b + a*Cos[c + d*x])^2) + (2*(2*a^2*A*b 
*Sin[c + d*x] + 2*A*b^3*Sin[c + d*x] + a^3*B*Sin[c + d*x] - 5*a*b^2*B*Sin[ 
c + d*x]))/(3*b*(-a^2 + b^2)^2*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d 
*x])^(5/2)) + (2*(b + a*Cos[c + d*x])^2*((a^2*A)/(3*(-a^2 + b^2)^2*Sqrt[b 
+ a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (A*b^2)/((-a^2 + b^2)^2*Sqrt[b + a 
*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*a^3*B)/(3*b*(-a^2 + b^2)^2*Sqrt[b 
+ a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*b*B)/((-a^2 + b^2)^2*Sqrt[b + 
 a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (a^3*A*Sqrt[Sec[c + d*x]])/(3*b*(-a 
^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (a*A*b*Sqrt[Sec[c + d*x]])/(3*(-a^ 
2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (5*a^2*B*Sqrt[Sec[c + d*x]])/(3*(-a 
^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (2*a^4*B*Sqrt[Sec[c + d*x]])/(3*b^ 
2*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (b^2*B*Sqrt[Sec[c + d*x]])/(( 
-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (a^3*A*Cos[2*(c + d*x)]*Sqrt[Sec 
[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (a*A*b*Cos[2*( 
c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - 
(2*a^2*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*C 
os[c + d*x]]) + (2*a^4*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^2*(-a^2 
 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]))*Sec[c + d*x]^(5/2)*Sqrt[Cos[(c + d...
 
3.4.87.3 Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 402, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4497, 27, 3042, 4491, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4497

\(\displaystyle \frac {2 \int -\frac {\sec (c+d x) \left (3 b (A b-a B)-\left (2 B a^2+A b a-3 b^2 B\right ) \sec (c+d x)\right )}{2 (a+b \sec (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec (c+d x) \left (3 b (A b-a B)-\left (2 B a^2+A b a-3 b^2 B\right ) \sec (c+d x)\right )}{(a+b \sec (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 b (A b-a B)+\left (-2 B a^2-A b a+3 b^2 B\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4491

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {-\frac {2 \int -\frac {\sec (c+d x) \left (b \left (-B a^2+4 A b a-3 b^2 B\right )+\left (2 B a^3+A b a^2-6 b^2 B a+3 A b^3\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\int \frac {\sec (c+d x) \left (b \left (-B a^2+4 A b a-3 b^2 B\right )+\left (2 B a^3+A b a^2-6 b^2 B a+3 A b^3\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b \left (-B a^2+4 A b a-3 b^2 B\right )+\left (2 B a^3+A b a^2-6 b^2 B a+3 A b^3\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) \left (2 a^2 B+a b (A+3 B)-3 b^2 (A+B)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \left (2 a^2 B+a b (A+3 B)-3 b^2 (A+B)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \left (2 a^2 B+a b (A+3 B)-3 b^2 (A+B)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {-\frac {2 (a-b) \sqrt {a+b} \left (2 a^2 B+a b (A+3 B)-3 b^2 (A+B)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}}{a^2-b^2}-\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

input
Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(2*a*(A*b - a*B)*Tan[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/ 
2)) - (((-2*(a - b)*Sqrt[a + b]*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)* 
Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + 
b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d* 
x]))/(a - b))])/(b^2*d) - (2*(a - b)*Sqrt[a + b]*(2*a^2*B - 3*b^2*(A + B) 
+ a*b*(A + 3*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sq 
rt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-(( 
b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/(a^2 - b^2) - (2*(a^2*A*b + 3*A*b^ 
3 + 2*a^3*B - 6*a*b^2*B)*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d 
*x]]))/(3*b*(a^2 - b^2))
 

3.4.87.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4491
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e 
 + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1 
/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp 
[(a*A - b*B)*(m + 1) - (A*b - a*B)*(m + 2)*Csc[e + f*x], x], x], x] /; Free 
Q[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m 
, -1]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4497
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*(A*b - a*B)*Cot[ 
e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] - Sim 
p[1/(b*(m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1) 
*Simp[b*(A*b - a*B)*(m + 1) - (a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e 
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && 
 NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
3.4.87.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(6306\) vs. \(2(357)=714\).

Time = 20.27 (sec) , antiderivative size = 6307, normalized size of antiderivative = 16.30

method result size
parts \(\text {Expression too large to display}\) \(6307\)
default \(\text {Expression too large to display}\) \(6348\)

input
int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNV 
ERBOSE)
 
output
result too large to display
 
3.4.87.5 Fricas [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorith 
m="fricas")
 
output
integral((B*sec(d*x + c)^3 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b 
^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3), 
x)
 
3.4.87.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(5/2),x)
 
output
Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a + b*sec(c + d*x))**(5/2), 
 x)
 
3.4.87.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorith 
m="maxima")
 
output
Timed out
 
3.4.87.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), 
x)
 
3.4.87.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)),x)
 
output
int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)), x)